• Home
  • News
  • Papers


게시판 상세페이지
A toxicogenomics study of two chemicals in coffee roasting process 2020.06.26
Author : OSHRI

A toxicogenomics study of two chemicals in coffee roasting process

(Read the full text)


Background : Roasted coffee beans are broadly consumed in nearly all classes of the population. 2,3-Butanedione is a food flavor that causes obstructive bronchiolitis in microwave popcorn manufacturing workers. It can be naturally produced when coffee is roasted.
Objective : To determine effects of 2,3-butanedione (diacetyl) and 2,3-pentanedione on workers’ health during the coffee roasting process, we performed a toxicogenomics study for differentially expressed genes in lung cells after exposure to the two chemicals.
Results : Gene selection was performed by clustering, gene ontology/pathway, and data mining using microarray data. Target microRNAs and genes were selected based on the expression of microRNAs and correlation analysis of genes and microRNAs. As a result of expression analysis of target gene miRNAs affected by the two chemicals, it was evaluated that Fosl1, Rb1, Aspn, Dusp1, Rnf19b, Jun, and Hbegf were over-regulated by targeting down-regulated miRNAs mutated by two chemicals. Using OMIM database and KEGG pathway, we found that Terc and Bmpr2 were two changed genes by matching with the KEGG disease pathway database.
Conclusion : Dosage, duration, exposure, and extrapolations are necessary to reflect effects of diacetyl and 2,3-pentanedione on workers in the coffee roasting process. This study focuses on early biochemical changes, mechanisms, and early biomarker discovery when normal lung cells are exposed to these two chemicals.
2,3-Butanedione · Coffee · Gene expression profile · 2,3-Pentanedione · Roasting