M - 143 - 2012

운전중인 배관의 검사 기술지침

2012. 6.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 한국산업안전보건공단 이 융 희

ㅇ 개정자 : 안전연구실

○ 제·개정경과

- 1997년 3월 기계안전분야 제정위원회 심의
- 1997년 4월 총괄제정위원회에서 심의
- 2007년 6월 기계안전분야 제정위원회 심의
- 2007년 8월 총괄제정위원회 심의
- 2012년 4월 기계안전분야 제정위원회 심의(개정)
- ㅇ 관련규격 및 자료
 - ASME B31.3 Chemical plant and petroleum refinery piping
 - API 570 Piping inspection code
 - Company international Ltd. Piping systems examination
 - ICI engineering Design guide for inspection of in-service piping
- 관련 법규·규칙·고시 등
 - 산업안전보건 기준에 관한 규칙 제2편 제2장 제4절 제256조(부식방지)
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6 월 20 일

제 정 자 : 한국산업안전보건공단 이사장

운전중인 배관의 검사 기술지침

1. 목 적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다) 제2편 제2장 제4절 제256조(부식방지)의 규정에 따라 사업장에 설치되어 운전 중인 배관의 검사기술 지침을 정함을 목적으로 한다.

2. 적용범위

이 지침은 사업장에 설치되어 운전 중인 금속 및 비금속 배관에서 열화가 예상될 경우 이를 검사하는데 적용한다.

3. 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "배관"이라 함은 유체를 이동시키거나 유체의 압력을 전달하기 위해 사용되는 원형의 관을 말한다.
 - (나) "배관시스템"이라 함은 유체의 이동, 배분, 혼합, 계량 등의 작업을 수행하기 위해 사용되는 일련의 연결배관을 말하며, 배관지지 부품은 시스템에 포함하고 지지를 위한 구조물은 포함하지 않는다.
 - (다) "주입점"이라 함은 화학적 성질 또는 다른 공정변수(온도, 압력, 유량)를 제어하기 위하여 공정흐름에 소량의 화합물이 주입되는 곳을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 안전보건규칙 및 고용노동부 고시에서 정하는 바에 의한다.

4. 일반사항

(1) 운전 중인 배관의 검사는 다음 사항을 결정하기 위하여 수행된다.

M - 143 - 2012

- (가) 차기검사까지 계속 사용여부
- (나) 수리의 필요성
- (다) 대체의 필요성
- (라) 검사주기의 단축
- (마) 검사주기의 연장
- (2) 운전중인 배관의 안전조치는 다음과 같다.
- (가) 배관 시스템의 내부 표면을 검사하기 위해 개방하는 경우 적절한 안전상 의 대책을 수립하여야 한다.
- (나) 적절한 안전대책은 배관시스템이 개방되기 전에 배관시스템을 격리하고 블라인드를 설치하여야 한다.
- (다) 개방하는 배관을 유해한 액체, 가스 또는 증기와 같은 모든 발생원으로부터 격리하고, 독성물질 또는 가연성 가스와 증기를 제거하기 위하여 퍼지시켜야 한다.
- (라) 검사원은 검사를 시작하기 전에 배관 시스템을 책임지고 있는 운전원으로부터 작업승인을 얻어야 한다.

5. 검사

5.1 특별한 형태의 부식과 균열에 대한 검사

열화에 쉽게 영향을 받는 배관 시스템을 검사하기 위해서는 다음과 같은 부분에서 특별한 주의가 필요하다.

- (1) 주입점
- (2) 끝이 막힌 배관(Deadleg)
- (3) 단열재 밑에서의 부식
- (4) 토양과 공기의 계면부식
- (5) 운전특성에 따른 국부부식
- (6) 침·부식/침식
- (7) 사용 환경요인에 의한 응력부식균열
- (8) 라이닝과 침전물 밑에서의 부식

M - 143 - 2012

- (9) 피로 균열
- (10) 크리프 균열
- (11) 빙점이하 온도에서의 손상

5.1.1 주입점

- (1) 주입점은 정상 혹은 비정상 운전 조건에서 국부적인 부식이 진행되므로, 정기적인 검사일정에 따라 철저히 검사한다.
- (2) 검사를 목적으로 주입점의 검사범위를 지정할 때에는
- (가) 상 방향흐름인 경우 검사범위는 최소 300 mm 또는 주입하는 배관 직경 의 3배 중 큰 값을 선택한다.
- (나) 하 방향흐름인 경우 검사범위는 주입점을 지난 후 흐름방향이 두 번 바뀌거나, 흐름방향이 최초로 바뀐 후 7.6 m 지난 거리 중 작은 값을 선택한다.
- (3) 필요에 따라서는 압력을 가진 주변 설비까지 주입점 범위를 확장하는 것이 더 적절할 수 있다.
- (4) 국부적인 부식이 예상되는 주입점의 검사범위 내에 두께 측정 위치의 설정은 다음에 따라야 한다.
- (가) 주입점의 검사범위 내에 있는 해당 접합류
- (나) 주입된 유체가 흐르면서 배관 벽과 충돌이 예상되는 위치에 있는 배관 벽
- (다) 주입점 범위내의 가장 긴 직선 배관방향의 중간 위치
- (라) 주입점의 상 방향흐름과 하 방향흐름 양쪽 경계
- (5) 주입점 검사시험은 방사선투과시험법과 초음파탐상시험법이 있다.

5.1.2 끝이 막힌 배관

(1) 끝이 막힌 배관에서의 부식율은 공정흐름이 있는 배관과 매우 다를 수 있

M - 143 - 2012

다. 검사원은 흐름이 없는 끝부분과 공정흐름이 있는 배관라인 연결부를 포함하여 끝이 막힌 배관의 벽두께를 모니터링하여야 한다.

- (2) 고온의 배관시스템 내에서는 끝이 막힌 배관에서 생기는 대류 흐름으로 인해 부식이 촉진된다.
- (3) 공정에서 더 이상 사용되지 않는 끝이 막힌 배관은 제거한다.

5.1.3 단열재 밑에서의 부식

- (1) 공정물질의 온도유지를 위해 단열 처리된 배관은 단열재 밑에서 표면 부식을 유발할 수 있다. 단열재 밑에서의 부식은 지역적 기후조건 즉, 온도 및 강수량과 공정지역 내의 냉각수 및 스팀 등에 따라 크게 달라지므로 비중을 고려하여 점검주기 등을 결정하여야 한다.
- (2) 비가 많이 오고 습한 해양에 위치한 지역은 검사 범위를 확대하고, 반면에 좀 더 시원하면서 건조한 지역에 위치한 배관은 검사범위를 축소할 수 있다.

5.1.3.1 단열재 밑에서의 부식에 민감한 배관 시스템

단열재 밑에서의 부식에 민감한 배관시스템은 다음과 같다.

- (1) 냉각탑 미스트에 노출되는 부분
- (2) 스팀 벤트에 노출되는 부분
- (3) 살수(Deluge) 시스템에 노출되는 부분
- (4) 공정유체 유출, 수분 침투 또는 산성 증기에 노출되는 부분
- (5) 탄소강 배관이 -4 ℃~120 ℃사이의 온도범위에서 사용되는 경우
- (6) 120 ℃이상에서 사용하는 탄소강 배관
- (7) 공정배관의 운전온도에서 운전되는 끝이 막힌 배관과 부착물
- (8) 염소응력부식균열에 민감한 65 ℃~204 ℃사이에서 사용되는 오스테나이트 스테인리스강 배관 시스템
- (9) 단열덮개에 손상을 줄 수 있는 진동배관 시스템

M - 143 - 2012

- (10) 코팅이나 포장재가 손상된 배관 시스템
- 5.1.3.2 부식에 민감한 단열배관 시스템의 일반적인 위치
 - 5.1.3.1에 열거된 배관 시스템에서 부식에 민감한 특정부위는 다음과 같다.
 - (1) 다음과 같이 단열재로부터 노출되어 수분의 침투가능성이 있는 개방구
 - (가) 사용하지 않는 배관부속품(벤트, 드레인 및 다른 유사한 부품들)
 - (나) 배관 걸이와 다른 받침대
 - (다) 밸브와 피팅 류(Fitting)
 - (라) 볼트로 조여진 배관 슈즈(Shoes)
 - (2) 플랜지와 다른 배관 부품에서 단열의 끝부분
 - (3) 손상되거나 떨어져나간 단열 덮개
 - (4) 수평 배관의 상부에서 적절하지 않게 단열된 덮개의 접합선
 - (5) 수직 배관의 단열 끝부분
 - (6) 경화되어 분리되거나 떨어져 나간 코킹(Caulking)
 - (7) 밴드가 손상되어 단열재 또는 단열재 덮개가 벌어진 부분
 - (8) 개방구 반대쪽의 배관 시스템 아래 부분
- 5.1.4 토양과 공기의 계면부식
 - (1) 방식대책 없이 매설된 배관에 대한 토양과 공기의 깊이측정값을 확인하여야 하며, 외부 배관검사 항목에 포함한다.
 - (2) 코팅이 손상된 부분, 코팅되지 않은 배관(Bare pipe)과 피팅이 국부적으로 발생한 부분에서 부식이 발생되었다면 매설배관 전체로 진행되었는지 여부

M - 143 - 2012

를 평가하기 위해 두께 측정과 굴착이 요구될 수 있다.

- (3) 토양과 공기 경계면에서 두께 측정을 한 후 적절히 복구하지 않으면 부식을 가속시킬 수 있다. 매설 배관의 손상된 증거가 있다면 굴착이 요구된다.
- (4) 부식이 우려되는 매설 배관의 경계면에서 코팅 처리가 손상되었다면 부식에 의한 손상여부를 확인하기 위해서 150 mm~300 mm 깊이로 굴착한다.

5.1.5 운전특성에 따른 국부부식

- (1) 운전 중에 국부부식을 확인하고 두께측정위치를 설정하는데 필요한 사항은 다음과 같다.
- (가) 부식의 발생요인과 부식 메커니즘(Mechanism)에 대해 전문지식을 갖고 있는 검사원의 확보
- (나) 비파괴검사의 확대적용
- (다) 운전원으로 부터 농도, 온도, 압력, PH 등 부식율에 영향을 미치는 공정 사고에 대한 정보
- (2) 국부부식이 예상되는 발생장소는 다음과 같다.
- (가) 제품분리기의 상 방향흐름과 주입점의 하 방향흐름
- (나) 응축흐름(Condensing stream)에서 노점 부식
- (다) 비합금 배관에 산 또는 알칼리 용액이 흘러드는 경우
- (라) 슬러리, 용액 결정체 또는 코크스를 생산하는 유체에서 하부 침전 부식
- (마) 촉매제 재생 시스템에서 염화물에 의한 부식
- (바) 외부 열 흔적이 있는 배관의 고온부식

5.1.6 침 · 부식/침식

(1) 침식은 다수의 고체 또는 액체의 충돌 작용에 의해 표면의 물질이 제거됨으로써 발생한다.

M - 143 - 2012

- (2) 침식은 보통 기화가 발생하는 조절 밸브의 하 방향흐름부위 또는 배관시스 템에서 방향이 바뀌는 난류 흐름의 지역에서 발생한다. 침식 피해는 대개 많은 양이 빠른 속도로 흐르는 고체 또는 액체의 흐름에서 증가된다.
- (3) 부식과 침식의 결합된 경우에는 부식 또는 침식이 단독으로 생성시키는 부식량보다 훨씬 더 큰 부식을 초래한다. 이런 형태의 부식은 흐름속도가 빠른 난류 흐름지역에서 발생한다.
- (4) 침식이 일어나기 쉬운 장소는 다음과 같다.
- (가) 콘트롤 밸브의 하 방향 장소
- (나) 오리피스의 하 방향 장소
- (다) 방출펌프의 하 방향 장소
- (라) 엘보우의 안쪽과 바깥 반지름과 같은 흐름방향이 바뀌는 장소
- (마) 난류를 만드는 배관 용접부, 구멍, 플랜지 등의 하 방향 장소
- (5) 국부적인 침·부식이 의심되는 부분은 초음파탐상시험, 방사선투과시험 또는 와전류탐상시험과 같은 적절한 비파괴검사법을 사용하여 두께측정 데이터를 수집하여야 한다.

5.1.7 사용 환경요인에 의한 응력부식균열

- (1) 배관 재료는 응력부식균열에 견딜 수 있도록 선택되지만, 공정조건의 변경, 단열재 밑에서 부식 및 예상되지 않은 응축수가 발생하는 경우 응력부식균 열이 발생할 수 있다.
- (2) 사용 환경요인에 의한 응력부식균열은 다음과 같다.
- (가) 단열재, 침전물, 가스킷 밑 또는 갈라진 틈에서 염화물과 수분의 가수분 해로 오스테나이트 스테인리스강의 염소이온에 의한 응력부식균열
- (나) 황화물, 증기응축 또는 산소에 노출된 오스테나이트 합금강의 다중티온산 (Polythionic acid) 응력부식균열

M - 143 - 2012

- (다) 알카리기(OH⁻)에 의한 응력부식균열
- (라) 응력이 완화되지 않은 배관 시스템에서 아민기에 의한 응력부식균열
- (마) 탄산염 응력부식균열
- (바) 산성수(Sour water)가 들어있는 시스템과 같이 습식 수소 황화물이 존재 하는 분위기에서의 응력부식균열
- (사) 수소 부풀음과 수소에 의해 야기되는 균열손상
- (3) 검사원은 사용 환경요인에 의한 응력부식균열 발생이 의심되는 배관에 대해서는 추가검사를 하여야 한다. 추가검사는 액체침투탐상시험, 습식형광자분탐상시험 또는 초음파탐상시험으로 한다.
- (4) 압력용기의 내부점검 시 응력부식균열이 발견된 경우 배관도 압력용기와 동일하게 검사하여야 한다.

5.1.8 라이닝과 침전물 밑에서의 부식

- (1) 외부의 내화성 라이닝과 내부의 내 부식성 라이닝이 파손되거나 부식이 되면 내부 라이닝의 일부분을 제거하여 상세히 검사하거나, 외부표면에서 초음파탐상시험을 하여 벽 두께를 측정한다.
- (2) 내화성 라이닝이 사용 중에 조각으로 떨어지거나 균열이 생기는 경우 내화성 라이닝 아래 금속은 부풀음을 초래할 수 있다.
- (3) 용기나 배관은 고착된 침전물에 의해서 심각한 부식을 일으킬 수 있으므로, 침전물이 확인되면 직경이 큰 배관라인은 부분시험을 할 수 있도록 선정 부위의 침전물을 제거한다.
- (4) 직경이 작은 배관 라인은 부분 시험을 할 수 있도록 스풀을 제거하거나 방사선투과시험과 같은 비파괴시험을 선정 부위에서 수행한다.

5.1.9 피로 균열

M - 143 - 2012

- (1) 피로 균열은 배관에 과도한 응력이 주기적으로 부과될 때 생기며, 이러한 주기적인 응력은 압력의 부과라든가, 기계적 또는 열적인 수단에 의해 부과될 수 있다.
- (2) 피로 균열의 발생은 경험적으로 열 상승 또는 냉각 순환의 횟수와 직접적 인 관계가 있으며, 배관시스템내의 유체흐름에 의해 유발되는 과도한 진동 은 피로손상을 유발할 수 있다.
- (3) 피로 균열은 전형적으로 가지 연결부와 같은 높은 응력이 발생하는 부분에서 최초로 탐지될 수 있다. 다른 열팽창 계수를 갖고 있는 금속이 용접에 의해 연결된 곳에서는 열적 피로에 의한 영향을 받기 쉽다.
- (4) 피로 균열을 탐지하는 비파괴검사방법에는 액체침투탐상시험, 자분탐상시험, 음향방출탐상시험이 있다.

5.1.10 크리프 균열

- (1) 크리프는 온도, 시간 및 응력에 영향을 받으며 운전 조건이 크리프 영역이 면서 반복응력이 작용하여 크리프와 피로가 상호작용하는 경우 균열은 가속된다.
- (2) 만일 온도가 과도하게 올라간다면, 금속내부에 기계적인 특성과 미세구조의 변화가 발생할 수 있고 이는 영구적으로 설비를 약화시킨다.
- (3) 크리프 균열을 탐지하는 비파괴검사방법은 액체침투탐상시험, 자분탐상시험, 초음파탐상시험, 방사선탐상투과시험 및 음향방출탐상시험이 있다.

5.1.11 취성파괴(Brittle fracture)

- (1) 취성파괴는 대부분이 최초의 수압시험 또는 과압과 같이 특별한 응력이 적용될 때에 발생한다.
- (2) 수압시험 또는 기압시험을 다시 하는 경우 취성파괴의 가능성이 고려되어

M - 143 - 2012

야 한다.

5.1.12 빙점 이하의 온도에서 손상(Freeze damage)

- (1) 빙점 이하의 온도에서 배관의 유체는 결빙될 수 있으므로 팽창으로 인한 배관의 손상이 유발될 수 있다.
- (2) 추운 날씨로 인해 배관이 파열된 경우 누수된 유체가 녹기 전에 노출된 배관이 빙점이하의 온도에서 손상됐는지를 점검하여야 한다.

5.2 검사의 형태

검사의 형태는 사용 환경과 배관시스템에 따라 다양하며, 다음과 같은 종류가 있다.

- (1) 내부육안검사
- (2) 외부육안검사
- (3) 배관진동 및 이동감시
- (4) 두께측정검사

5.2.1 내부육안검사

- (1) 내부육안검사는 큰 지름을 갖는 운송라인, 덕트, 촉매라인 또는 큰 지름을 갖는 배관시스템에 대해 적용한다.
- (2) 원격 육안검사(Remote visual inspection) 기술은 너무 작아 들어갈 수 없는 배관을 검사할 때 사용한다.
- (3) 배관 플랜지를 해체하여 육안검사가 가능할 때는 추가적으로 내부검사를 할 수 있다.

5.2.2 외부육안검사

M - 143 - 2012

- (1) 외부육안검사는 배관, 단열 시스템, 도색, 그리고 코팅 시스템의 외부 상태를 확인하기 위해 행해지고, 축 정렬불량, 진동, 누설의 징후를 점검하기 위해 수행된다.
- (2) 배관지지접촉 부분에서 부식생성물이 쌓이는 경우, 지지부분을 떼어내고 검사할 필요가 있다.
- (3) 외부 검사는 배관 걸이와 지지대에 대한 검사를 포함하며, 스프링 지지대의 기초가 떨어져 나갔거나, 균열 또는 파손된 걸이, 지지 구조물에서 이탈된 받침대 등과 같이 부적절한 상태는 기록하고 시정한다.
- (4) 수직으로 지지하는 동체다리(Dummy leg)는 내부 부식을 유발할 수 있는 물이 차 있는지의 여부를 확인한다.
- (5) 수평으로 지지하는 동체다리는 외부 표면에 습기가 발생되지 않았는지를 확인한다.
- (6) 벨로우 신축이음은 설계범위를 벗어나는 비정상적인 변형, 어긋남 또는 이탈이 있는지 육안으로 확인하다.
- (7) 검사원은 사용 중에 부적절한 플랜지, 임시적인 수리(클램프), 변경(구부리기 쉬운 호스) 또는 부적절한 사양의 밸브와 같은 장기간 운전에 대해 적절하지 않은 부품을 사용하였는지를 주의 깊게 관찰하여야 한다.

5.2.3 배관진동 및 이동감시

- (1) 운전원은 운전 중에 진동 또는 흔들리는 배관이 발견되면 검사원에게 보고 하여야 하며, 유체 해머, 증기 라인 내에 액체 슬러그 또는 비정상적인 열 팽창을 유발하는 다른 중요한 변동사항은 보고하여야 한다.
- (2) 진동 배관 시스템이 끝나는 접합부에는 주기적으로 자분탐상시험 또는 액체침투탐상시험을 하여 피로 균열의 징후에 대해 점검하여야 한다.

5.2.4 두께측정검사

M - 143 - 2012

5.2.4.1 두께측정위치 모니터링

- (1) 두께측정위치는 검사가 행해지는 배관 주위를 따라 선정한다.
- (2) 각각의 배관시스템은 두께측정위치에서 두께측정을 함으로써 모니터링 되어 진다.
- (3) 두께측정위치는 각각의 배관에 대해 적절히 분배되어야 한다.
- (4) 각각의 두께측정위치에서 최소두께는 초음파탐상시험 또는 방사선탐상투과 시험에 의해 알아낼 수 있다.
- (5) 부식/침식이 부식율을 증가시킬 수 있는 엘보우와 티(Tee)의 내·외부에 특별한 주의를 가지고 두께 측정을 하여야한다.
- (6) 단열재 하에서의 부식, 토양과 공기의 계면부식, 전면적인 균일부식 또는 잠재적인 국부부식이 발생되는 위치를 두께측정위치로 선정한다.
- (7) 두께측정위치는 동일 두께측정위치에서 반복적인 측정이 가능하도록 검사 도면 또는 배관시스템에 표시한다.

5.2.4.2 두께측정위치 선정

- (1) 검사원은 두께측정위치의 숫자를 정하는 경우 그 공정에서 경험했거나 예상되는 부식 형태를 고려하여야 한다.
- (2) 정제와 석유화학설비에 대한 부식은 축방향 또는 원주방향 위치와 무관하 게 일정한 두께 감소를 가져오는 등 비교적 균일하므로. 추가적인 두께측 정위치가 요구된다.
- (3) 다음과 같은 배관시스템에 대해서는 보다 많은 두께측정위치를 선정해야한다.

M - 143 - 2012

- (가) 누출되면 안전이나 환경측면에서 비상사태를 야기할 가능성이 큰 경우
- (나) 부식율이 보다 클 것으로 예상되거나 경험한 경우
- (다) 국부적인 부식이 발생할 가능성이 큰 경우
- (라) 접속품, 끝이 막힌 배관, 주입점 및 다른 유사한 부품과 같이 구조가 복잡 한 경우
- (마) 단열재 밑에서의 부식이 발생할 가능성이 큰 경우
- (4) 다음과 같은 배관시스템에 대해서는 보다 적은 두께측정위치를 선정할 수 있다.
 - (가) 누출되더라도 안전이나 환경측면에서 비상사태를 야기할 가능성이 작은 경우
 - (나) 상대적으로 부식성이 없는 배관시스템
 - (다) 긴 일직선의 배관시스템

5.2.4.3 두께 측정 방법

- (1) 초음파두께측정은 NPS 1인치(Norminal pipe size)이상인 배관의 두께를 측정하기 위한 방법이다.
- (2) 방사선투과시험은 배관 지름이 NPS 1이하인 배관의 두께를 측정하기 위한 방법이다.
- (3) 배관 부식이 균일하지 않거나 잔존두께가 최소요구두께에 근접할 때는 추가적인 두께 측정이 요구되며, 방사선투과시험, 초음파탐상시험법 또는 와전류탐상시험법을 사용한다.
- (4) 유용한 부식율을 결정하기 위해서는 가능한 동일위치에서 가까운 곳의 가장 얇은 부위를 측정한다.
- (5) 측정값은 측정된 최소값 또는 평균값을 선택할 수 있다.
- (6) 배관 시스템이 가동중지 중인 경우 배관을 열고서 캘리퍼스를 사용하여 두

M - 143 - 2012

께를 측정할 수 있다.

5.3 배관시스템의 검사

5.3.1 밸브검사

- (1) 일반적으로 배관 부분에 있는 밸브에 대해서는 일상적인 두께 측정을 하지 않는다.
- (2) 일반적인 설계 조건에 따르면 밸브본체는 다른 배관 부품보다 더 두껍다. 그러나 밸브가 사용과 수리를 위해 해체될 때 비정상적인 부식형태나 두께 감소 부분에 주의를 기울여야 한다.
- (3) 심하게 온도가 바뀌는 공정에 노출된 밸브 본체(예를 들어 촉매 재 결정 발생기와 증기세척)는 정기적으로 열 피로 균열을 검사하여야 한다.
- (4) 콘트롤 밸브나 다른 감속밸브는 특히 압력강하가 크고, 슬러리가 사용되는 경우에는 국부적인 부식/침식이 발생할 수 있다.
- (5) 체크밸브가 역류되는 유체는 차단할 수 있는지 확인하기 위하여, 내부를 육안 검사하는 방법은 다음과 같다.
- (가) 마모되어 과도한 느슨함이 없고, 요구되는 대로 플레퍼(Flapper)의 움직임이 원활한지 점검한다.
- (나) 플래퍼 멈춤쇠가 과도하게 마모되어서는 안된다.
- (다) 플래퍼 너트는 사용 중에 떨어져 나가는 것을 막기 위해 플래퍼 볼트에 고정되어야 한다.

5.3.2사용중 용접부의 검사

- (1) 배관 용접부의 검사는 신규설치, 수리 또는 변경 시 이루어진다.
- (2) 선택적인 용접 부식이 기록될 때는 동일배관이나 시스템의 용접부 부식에

M - 143 - 2012

대해 추가적인 검사가 이루어져야 한다.

- (3) 균열과 같은 결함이 원래 용접 구조물에 있었는지, 사용 환경요인에 의한 균열 메카니즘으로 있었는지를 규명하여야 한다.
- (4) 기록된 결함이 원래 용접구조물에 있었던 결함이라면, 전체 배관에 대한 용접결함을 평가하기 위하여 다음의 내용을 검토하여야 한다.
- (가) 검사원의 판단
- (나) 인증된 용접 검사원의 판단
- (다) 배관기술자의 판단
- (라) 사용적합성(Fitness for service) 분석
- (5) 용접부를 평가할 때 고려해야 할 사항은 다음과 같다.
- (가) 최초로 용접할 때 검사합격기준
- (나) 결함의 진행정도와 크기 및 방향성
- (다) 운전시간
- (라) 설계조건 대비 운전조건
- (마) 이차적인 배관응력의 존재
- (바) 피로 하중의 가능성
- (사) 주배관 또는 보조 배관 시스템
- (아) 충격 또는 일시적인 하중의 가능성
- (자) 사용 환경요인에 의한 균열의 가능성
- (차) 용접 경도

5.3.3 플랜지 접합부 검사

- (1) 신규 설치된 죔쇠(Fastener)와 가스킷에 대해서는 재료사양을 표시하고 결정하기 위하여 검사하여야 한다.
- (2) 플랜지와 밸브몸통을 조이는 죔쇠는 육안으로 부식에 대한 검사를 한다.

M - 143 - 2012

- (3) 플랜지와 밸브몸통을 연결하는 접합부는 흠이나 침전물 또는 떨어지는 물 방울 소리와 같은 누수의 증거에 대해서도 검사하여야 한다.
- (4) 플랜지에 밀봉제가 주입된 클램프 접합부는 볼트에서 누수되고 있는지를 점검하여야 한다.

5.4 검사후의 조치

검사의 목적을 달성하기 위해 변경시킨 배관의 구성요소, 지지물, 절연(격리) 또는 접지 등이 제거되거나 풀린 상태는 제 기능이 유지되도록 보완검사를 통 하여 복구한다.

5.5 기록

배관의 검사결과에 대한 모든 내용은 기록으로 유지·관리를 한다.